报告题目:杏福娱乐清洁能源讲坛系列报告(二十七)Insights into Oxygen Electroreduction on (La, Sr)MnO3
报 告 人:Prof. Sossina M. Haile
Materials Science and Engineering, Northwestern University, USA
报告时间:2016年4月15日星期五上午10:00
报告地点:热能系报告厅
报告摘要🫱🏽:
Lanthanum strontium manganite is the canonical cathode for solid oxide fuel cells. It offers a valuable balance between electrochemical activity, chemical stability, and thermomechanical compatibility with the widely used electrolyte, yttria stabilized zirconia (YSZ). Despite its widespread implementation, questions regarding the reaction pathway for oxygen electroreduction on this material remain open. Here, a fundamental study of the reduction mechanism is carried using thin film methods. Libraries of (La0.8Sr0.2)0.95MnO3+δ (LSM) thin film microelectrodes with systematically varied thickness or growth temperature were prepared by pulsed laser deposition, and a novel robotic instrument was used to characterize these libraries in automated fashion by impedance spectroscopy. All impedance trends are consistent with a reaction pathway involving oxygen reduction over the LSM surface followed by diffusion through the film and into the electrolyte substrate. The surface activity is found to be correlated with the number of exposed grain boundary sites, which decreases with either increasing film thickness (at constant growth temperature) or increasing film growth temperature (at constant thickness). These findings suggest that exposed grain boundaries in LSM films are more active than exposed grains towards the rate-limiting surface process, and that oxygen ion diffusion through polycrystalline LSM films is faster than several prior studies have concluded.
报告人介绍🦸🏼:Brief Biography
Sossina M. Haile is the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University, a position she assumed in 2015 after serving 18 years on the faculty at the California Institute of Technology. She earned her Ph.D. in Materials Science and Engineering from the Massachusetts Institute of Technology in 1992. Haile’s research broadly encompasses solid state ionic materials and devices, with particular focus on energy technologies. She has established a new class of fuel cells based on solid acid electrolytes and demonstrated record power densities for solid oxide fuel cells. Her more recent work on water dissociation for solar-fuel generation by thermochemical processes has created new avenues for harnessing sunlight to meet rising energy demands. She has published more than 150 articles and holds more than 15 patents on these and other topics. Amongst her many awards, in 2008 Haile received an American Competitiveness and Innovation (ACI) Fellowship from the National Science Foundation in recognition of “her timely and transformative research in the energy field and her dedication to inclusive mentoring, education and outreach across many levels.”